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EXPONENTIALLY VARYING SHEAR MODULUS
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Faculty of Civil Engineering, Technion, 32000 Haifa, Israel

(Receil'ed 20 December 1995; in rel'isedform 10 October 1996)

Abstract-Previously published analytical solutions of dynamic problems for continuously non­
homogeneous bases concerned one-dimensional, plane or axisymmetric cases. In this paper a
solution in cylindrical co-ordinates is presented for an arbitrary angle distribution in the horizontal
plane, The medium is assumed as isotropic, continuously non-homogeneous in the depth direction
and homogeneous in the horizontal direction, Poisson's ratio is adopted as constant. For each angle
component of the solution including cos(nH) or sin(nlJ.). the problem is reduced to three ordinary
differential equations (or two for the axisymmetric case where n = 0); two of them are coupled.
Corresponding boundary conditions are formulated for given stresses or displacements at planes
z = const. An example ofnon-homogeneity where shear modulus increases exponentially with depth,
G(z) = G(O) exp(z/zlJ), is considered (zo is a constant). The solution for the half-space subjected to
a surface load is represented in the form of integrals including Bessel functions and suitable solutions
of above-mentioned ordinary differential equations. At low frequencies the integrands have no
singularities on the real axis of the complex plane; then, beginning from a definite value of the
frequency (cutoff frequency), poles of integrands appear on the real axis and energy can be passed
to the half-space. At some frequencies (resonance frequencies) there are double poles on the real
axis leading to infinite amplitudes in the non-dissipative case. For calculations, shear modulus was
treated as a complex quantity (G(O) = Go(l + iE)), where E is a small positive constant. Results of
calculations for surface displacements induced by vertical and horizontal acting point forces on the
surface of the half-space are presented for static and dynamic problems, and comparison with results
for the homogeneous half-space is demonstrated. :1.;; 1997 Elsevier Science Ltd.

INTRODUCTION

Known analytical solutions concerning vibration ofa continuously inhomogeneous medium
deal with one-dimensional, plane or axisymmetric problems. Difficulties, arising in inhomo­
geneous elastodynamics, result from the fact that the classical method of separation by
using Helmholtz potentials is applicable only in a few cases of inhomogeneity (Hook, 1961,
1962; Alverson et al., 1963). For such a separable case, in which the variations of elastic
parameters and density are identical (as the square of depth), Karlsson and Hook (1963)
solved the plane Lamb's problem. Separation can be achieved also in the case of incom­
pressible medium with a linearly varying shear modulus; the corresponding solution of the
axisymmetric problem was constructed by Awojobi (1972, 1973) and applied in his papers
for approximate solving of a rigid disk problem for the case when shear modulus at the
surface of the half-space is equal to zero. Rao (1967,1970), Rao and Goda (1978), Vrettos
(1990a, 1990b, 1991) have shown that in some cases the solution of time-harmonic problem
can be obtained for coupled equations using a suitable change of the depth variable
and Frobenius' method. Rao suggested a kind of non-homogeneity with the exponential
variation of shear modulus and density from a value at the surface of the half-space to a
limited value at infinite depth. VreUos, considering such a type of half-space (however with
constant density), unlike Rao (who used governing equations in stresses), formulated the
problem in displacements which simplifies the solution. In the present paper the problem
is also formulated in displacements. The general solution in cylindrical co-ordinates is
constructed for a medium which is continuously non-homogeneous in the depth direction
and possesses non-varying properties in the horizontal direction. As an example of non­
homogeneity, the exponential law for the shear modulus increasing with depth without
limit is considered. Note that an analogous medium was studied by Wilson (1942) who
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considered the propagation of Love waves in a half-space; Ghosh (1971) studied antiplane
shear vibrations of the half-space in the case when the shear wave velocity decreases with
depth.

We use similar substitution for the depth co-ordinate z as in papers by Rao, Goda and
Vrettos, i.e., ~ = exp( -z/zo). The action of vertical and horizontal time-harmonic forces
on the surface of the corresponding half-space is studied with the help of Hankel's trans­
formation and Frobenius' method which is applied to ordinary differential equations for
functions entering Hankel's transforms. Dynamic behavior of the considered half-space
differs significantly from the dynamic behaviour of Rao's half-space. Thus the cutoff
frequency as well as resonant frequencies occur in our case whereas these phenomena are
absent in the case of Rao. For avoiding the difficulties connected with singularities in the
integral representation of the solution, the shear modulus is considered as complex (the
half-space is treated as visco-elastic). This enables us to carry out the integration over the
real axis.

BASIC EQUATIONS

The equations of motion in cylindrical co-ordinates for a linear-elastic isotropic half­
space read

(I)

where p is the density, (ji/i,) = r, 9, z) are the components of the stress-tensor; Un Ua, Uz

denote displacements in the directions of the co-ordinate lines; and t is time. Using Hooke's
law and the expressions for the components of the strain-tensor results in

" (1 OU,9 Ur)
(j99=Ae+2G ~7i9+-;'
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(jr9 - G r 09 + or - r '
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e=~~-+--a() +-+;;-,

or r \7 r uZ

2Gv
..1=-­

l-2v
(2)

where e is the dilatation, A is Lame's coefficient, G is the shear modulus, and v is Poisson's
ratio. For the harmonic motion with the time-dependence in the form exp(iwt), assuming
that the shear modulus depends only on the co-ordinate z and Poisson's ratio is constant,
we obtain the following equations for amplitudes (we keep for amplitudes the same notation
as for displacements) :

(3)
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It is assumed at this stage that v < 1/2; when v ---+ 1/2, the terms having the value 1-2v in
denominators remain limited because of the fact that the dilatation, e, tends to zero.
Keeping in mind to apply for the solution of eqns (3) Hankel's transformation with respect
to r and Fourier's series with respect to 9 we construct a particular solution of eqns (3) as
a sum of the two following solutions:

(4)

where

[
COS(n9)] [ sin(n9) ]

r j = sin(n9)' r 2 = -cos(n9)' X= kr, n = 0, 1,2, ....

In eqns (4) Bessel functions and three unknown functions p(z, k), q(z, k), w(z, k) are
introduced. The parameter k is considered as the parameter of Hankel's transformation;
the sum of these two solutions must be integrated with respect to k from zero to infinity
(with the corresponding treating points of singularities). Note that the similar forms of
solutions with exponential functions for p(z, k), q(z, k), w(z, k) are widely used for homo­
geneous half-spaces and layers (see, for example, Wolf, 1985). For n = 0 the first solution
relates to torsional vibration, and the second solution corresponds to axisymmetric
vibration. A representation similar to expressions (4) was used by Waas et al. (1985) for
constructing solutions corresponding to free vibrations of transversely-isotropic media.

Firstly, using known relationships for Bessel functions (Abramowitz and Stegun, 1964)
we write results for some operators in eqns (3) acting on I n_ 1(X) and In(X)!x:

a2
Jn_ I (X) = k2 [(n-l)(n-2) J ()-J ()+ In(X)]

;'l , 2 n-I X n-I X
ur X X

(5)
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Using these expressions we obtain, after substituting the solutions (4) in eqns (3), Bessel
functions with indexes nand n-I only. Trigonometric functions cos(n9) or sin(n9) will be
as a common multiplier for all members of an equation.

Consider the first solution (4). After its substituting in the first eqn (3) the following
functions of the variable r appear: Jn~ I (X)!x.2, I n(X)/X3 and In(X)/X. The members containing
the two first functions annihilate each other; grouping together the members with the last
function leads to the following equation:

d 2p dG dp 2 2
G-o +--+(pw -k G)p=O.

dz- dz dz
(6)

After substituting the first solution (4) in the second eqn (3), in addition, we have
members with Jn~ 1(X), that generate the same eqn (6) as the members with In(X)!x., whereas
another member cancels out. In the third eqn (3) all the members annihilate each other
when substituting the first solution.

Analogously we treat the second solution (4). By its substituting in the first and second
eqns (3) we obtain the following equation:

where

d2 q dG dq ( J Gk2
) 1-,2 dw dG

kG-+--+ pw--- q-G--k--- w=o
dz2 dz dz ,2 ,2 dz dz

2 1-2v G C;
, = =--=-

2(1-v) },+2G C; .

(7)

(8)

Here Cp and Cs are velocities of the compression and shear waves respectively; this relation
is constant for the considered case of non-homogeneity. Substituting the second solution
(4) in the third eqn (3) leads to the following equation:

Equations (6), (7), (9) with suitable boundary conditions determine the desired functions
p(z, k), q(z, k), w(z, k); it is worthy of attention that the obtained equations are independent
of n.

Consider stresses that can be needed for fitting the boundary conditions on planes
z = const. For the sum of two solutions (4) we obtain:

(10)
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The last two equations lead to

3123

(11 )

Analogously, for the displacements corresponding to the sum of solutions (4) we can write

U, = O,rj, U,9 = 09r2, U2= Ozr,

0,+09 = -(p-q)Jn+,(X), 0,-0,9 = -(p+q)Jn-I(X), O2 = wJn(X)· (12)

The expression for S22 in (10) together with eqns (11) allow us to formulate boundary
conditions for functions p, q, w through stresses, whereas expressions (12) are used for
boundary conditions in displacements. Suppose for z = Zo amplitudes of stresses are:

(13)

Integrating the sum of two solutions (4) over k and using properties of Hankel's trans­
formation, we obtain, in accordance with eqns (10) and (11), for z = Zo

dq dp k rex;
kw - dz - dz = G(zo) Jo r[6,z(r) - 6,9z(r)]1n-' (kr) dr.

The last two equations result in

(14)

(15)

These equations together with the first eqn (14) represent the boundary condition in the
case of given stresses.

Relationships (12) can be treated analogously and lead to the boundary conditions for
the functions p, q, w when displacements are given. Let there be displacements at a plane
z = Zo given by:

(16)
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Analogously to eqns (14) one can obtain for z = Zo

q-p = k L'; r[Ur(r) +u,9(r)]1n+ I (kr) dr

q+p = -k f" r[Ur(r)-U,9(r)]1n_' (kr) dr

W = k fcc ruz(r)Jn(kr) dr.

The two first equations result in

(17)

q = ~ {f" r[ur(r) +U,9(r)]1n+] (kr) dr- L'" r[ur(r) - U,9(r)]1n-' (kr) dr}

p = - ~ {fo' r[ur(r) +U,9(r)]1n+ I (kr) dr+ L'" r[ur(r) - U9(r)]1n-' (kr) dr}- (18)

Equations (18) together with the third eqn (17) are the desired boundary conditions for the
considered case. As seen we have for the function p the independent eqn (6) and the
independent boundary conditions: the last eqn (18) or the first eqn (15). Thus, the two
solutions in eqns (4) can be considered as totally independent solutions.

Consider, as an example, the action of a vertical force with amplitude Po uniformly
distributed over a circular area of radius R on the surface (z = 0) of a half-space. Using
n = 0 and the upper line in rj (j = 1,2), we can consider only the second solution in eqns
(4). The boundary condition at the plane z = 0 for the function wand q will be as follows:

dw kr;
2
p iR r

2
p

-d +qk(1-2r2) = - 0 rJo(kr) dr = - G(O) °RJI (kR)
z G(0)nR 2

0 n

dq
dz -kw = O. (19)

To these relationships the condition of absence of sources at infinity (z -> (0) must be
added. Let ql, WI and q2, W2 be two linearly independent solutions of eqns (7), (9) which
satisfy corresponding boundary conditions at infinity. For example, in the case of homo­
geneity one can obtain on the basis of eqns (7), (9)

where

qI = 0: 1 exp( -o:,z), WI = kexp(-:xIz),

q2 = kexp( -0:2Z), W2 = :X2 exp( -O:zz) (20)

Introducing two arbitrary coefficients A](k) and Aik) and using a linear combination of
two considered solutions we obtain according to (19) the following equations for these



coefficients:
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dw)O, k) dqj(O, k)
Cl,= dz +k(I-2r)q;(0,k), c2j=kwj (0,k)- dz '

r 2 Po
d l = - G(O)nR J I (kR), d2 = 0.
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(21 )

The amplitude of displacements are expressed through the integrals by parameter k (see
eqns (4)):

Ur = r [A l ql(z,k)+A2q2(Z,k)]J,(kr)dk

U o = r[A] WI (z,k)+A2W2(Z,k)]Jo(kr) dk, U8 = 0. (22)

As a second example consider the action of a horizontal force with the amplitude Qo
uniformly distributed over a circle of radius R on the surface (z = 0) of a half-space. We
use: n = I (the upper line in rJ, fizz = 0, fire = - fi 9z = - Qo/(nR2) for r < R and zero values
for all the stresses for r> R. From eqns (15), (14) we obtain the following boundary
conditions at the plane z = °:
dp kQo fR Qo
-d = rJo(kr) dr = G(O) RJ1 (kR)

z G(0)nR 2
0 n

dw dq Qo
dz +qk(1-2r

2
) = 0, kw- dz = - G(0)nRJ1 (kR). (23)

The part of the total solution including the functions q], WI, q2, W2 is treated as in the case
of the vertical force using the coefficients A I and A 2 ; system (21) remains valid with the
following changes in the right sides

(24)

For constructing the part of the solution containing the function p(z, k) (see eqns (4)), we
consider some particular solution PI which satisfies eqn (6) and the condition at infinity.
For example, this solution for the homogeneous half-space can be accepted as exp( -C(IZ).

Representing the function p in the form p = C!pI and using the first condition (23) leads to
the following expression for the coefficient C :

_ d2 ( _dPI(O,k))
C 1 - - F F - dz .

Amplitudes of displacements can be expressed using eqns (4)

I1r = f' l[q(z,k)-P(Z,k)]JI~~r) -q(Z,k)Jo(kr)]dk

11.~ = f' [[q(Z,k)_P(Z,k)]JI~~r) +P(Z,k)Jo(kr)]dk

110 = f: w(z, k)J1(kr) dk

(25)

(26)
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Consider another version of the governing eqns (6), (7), (9). Note that the dilatation
for the sum of solutions (4) has the form

(27)

Let us introduce the following two functions

(28)

The function e remains limited when r ---> 0 (for non-compressible medium); the function
'is associated with the curl of the displacement field. Equations (7) and (9) can be rewritten
using the function e and'; together with eqns (28) this results in the following system of
first-order differential equations

d[ dG 0

dz = ke+2k dz W-PW"q

de - dG J

dz = k(+2k dz q-pw-w

dq (
-=~-kw
dz G

dw e
dz = r

2 G-kq. (29)

The boundary conditions corresponding to the first eqn (14) and the second eqn (15) will
be

e - 2kGq = k IX rdAr)Jn(kr) dr

[- 2kGw = ~ [f' r[drAr) + d:JcCr)]Jn+ I (kr) dr-rr[drz(r) - d:iz(r)]Jn-i (kr) drJ (30)

The formulation (29), (30) permits calculations for the compressible medium (r i= 0) as
well as for the non-compressible medium (r = 0).

VIBRAT10N OF A HALF-SPACE WITH EXPONENTIAL INCREASE OF SHEAR MODULUS
WITH DEPTH

Consider a non-homogeneous half-space whose shear modulus varies with depth as
follows:

G(z) = G(O) exp(z/zo) (31 )

where Zo is a some length, G(O) is the shear modulus at the surface of the half-space. It is
appropriate to introduce into the solution dissipative properties of the materials. For the
harmonic motion one can consider a shear modulus as a complex quantity. Following the
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widely used approach we adopt

G(O) = GoO +i<;)
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(32)

where <; is a small positive constant determining measure of internal damping, and Go is the
shear modulus at the surface for the non-dissipative case. Poisson's ratio is assumed to be
real.

Action ofa vertical force
This case is represented by eqns (7), (9) and conditions (19), (21). Using, for eqns (7),

(9), the substitution of ~ = exp( -z/zo) leads to

where

2 d
2

W '7 1 -7 2 - dq 2 -
~ -+r-(e-fJ~~-k~)w-(O-t )k--::+(l-2t )kq =0

de . de:;
(33)

(34)

The complex quantity fJ is implied to have the positive real part. As to boundary conditions
(2 I) we use the variable ~ and make the following changes

_ dwj(l,k) - 2. - _ - - dqj(l,k)
elj = - d" +k(1-2t )qj(l,k), e 2j = kw;(l,k)+ d" ,c;. c;

~ = zod j (j = 1,2). (35)

The expressions for displacements (22) can be rewritten in the form

(36)

Let density, p, be constant. Solutions of system (33) can be found in the form of power
series (Frobenius' method) :

uc

q = L an~n+m,
fI=O

cc

W = L bn~nTm.
'1=0

(37)

Substituting these expressions in eqns (33) and considering terms with the m-power of ~

(n = 0) lead to the following equations

[ PJ [I _t
2 Jm(m-I)-~ ao+;( ~m-1 bo=O

(38)
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The determinant of this equation must be equal to zero which gives the equation for
determination of m. This equation can be written in the form

(39)

where 9 = m(m-I). From eqn (39)

Four corresponding values of m will be

(40)

mj = 0.5+(0.25+g)I/2

m j = 0.5-(0.25+gj _ 2 )1/2

(j = 1,2)

(j = 3,4) (41)

where the radicals having the positive real part are meant. For matching the condition for
Z -> 00 (~-> 0) we will use the two solutions q], WI and q2, W 2corresponding to ml and m2,
respectively. For these solutions we set ag) = I (j = 1,2) and the corresponding values of
bg) are obtained from the second eqn (38) :

(42)

Consequent coefficients in series (37) can be found as the result of substituting these series
in eqns (33) and considering the terms containing ~n+m for n = I, 2, '" . The following
recurrent system of equations is obtained:

[(n+m)(n+mi-I) - ~Ja~) +k [I ~r2 (n+m) -I]W = -(p fJ2a~~ 1

k[I-2r 2
- (l-r2)(n+m)]a~) + [(n+m)(n+mi-I) _k2r2]b~) = -(YfJ2r2b~~1

(n = 1,2, ... ). (43)

Beginning from ag), W one can find the coefficients a~), b~) (n = 1,2, ...) with the help of
system (43). The convergence of series (37) is better for smaller values of the parameter ();
(for the static case only one term for n = 0 is needed). Using the 8 bytes number format
for variables, one can perform calculations with sufficient accuracy till values of () about
20.

For the real values of k and fJ = 1 (non-dissipative case) all quantities associated with
the second solution are complex conjugate to the corresponding quantities for the first
solution. From this follows that the expressions entering into integrals (36) will be in the
considered case

C22ql (~, k) - C2 1q2 (~, k)
D

1m [C21 q2 (~, k)]

Im(C12 C21 )

C22 WI (~, k) - (~21 W 2 (~, k)
D

Im[c21w2(~,k)]

Im(cl2 c2d

(44)

For small values of the parameter () these quantities are non-singular for positive values of
k and integrals (36) can be evaluated directly. Amplitudes of displacements are real for
these small frequencies; this means that energy is not transmitted to the half-space. Begin­
ning from () = ()o = 1.2024 the first pole of quantities (44) appears in the vicinity of the
point k = 0, and the proper avoiding this pole in the complex plane k brings into existence
an imaginary part for the amplitudes of the displacements. The frequency ()o plays the role
of the so-called cutoff frequency, for () > ()o the motion can propagate in the half-space.
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With increase of the frequency parameter 8, additional poles come into being. The values
of 8, at which new zeros of D appear, are associated with the form of solution of eqns (33)
at the point k = 0 when the equations are separated

(45)

Solutions of these equations are expressed through Bessel function (Abramowitz and Stegun
1964). In the non-dissipative case ([3 = I), two required solutions will be as follows:

(46)

In this case the coefficients of the system (35) have the form

Thus, zeros of D coincide with the zeros of the functions Jo(28) and Jo(21:8), and at the
corresponding non-dimensional frequencies 8 the changes of the number of poles of the
integrands take place. The cutoff non-dimensional frequency, 80, is equal to half of the first
zero of the Bessel function Jo(x). Note that in the case k = 0 we have the equations of one­
dimensional motions of a bar, subjected to shear deformations (the first eqn (45)) and
longitudinal deformations without lateral displacements (the second equation). It is clear
that the found frequencies are corresponded to the resonance frequencies of the considered
infinite bars. As to half-space with a bounded loading area on its surface, simple poles of
integrands in (36) do not produce an infinite increase in the solution. However, the half­
space in question possesses resonance frequencies owing to double roots of the denominator
D. These frequencies lie slightly lower of odd zeros of the function Jo(21:8); thus for 1: = 0.5
(v = 1/3) the three first resonance values of 8 are 2.2840, 8.6316, 14.9181 (the first three
above-mentioned odd zeros are 2.4048, 8.6537,14.9309). The values of k, which correspond
to the double root for these frequencies, are equal to 0.399, 0.1882, 0.1581, respectively.
For illustration, in Fig. I the behavior of the denominator D on a part of the k-axis is
shown for the first resonance frequency ([3 = I).

Calculations show that singularities of the integrands can lie between k = 0 and k = A8
(for 8 < 20), where the coefficient A decreases from 1.1 (for v -> 0) to 0.98 (for v -> 0.5).

Numerical results correspond to the case of the point force (R -> 0) ; in this case the
value of Jj(kR)/R in the integrals is replaced with 0.5k/zo. For evaluation of an integral like
(36) a complex value of the parameter [3 was introduced which eliminates all the above­
mentioned singularities. When numerically integrating, an enough small dividing the inter­
val, where the singularities lie for the non-dissipative material, is used. The part of the
integrals corresponding to the interval B < k < etJ (where B is a large value permitting the
asymptotic representation of Bessel functions in (36) and surpassing all the considered
singularities) is evaluated by means of the integration by parts that gives an asymptotic
expansion in negative powers of Bf (only the first so obtained member was used).

Firstly we consider the numerical results for the static problem. Using eqns (44) the
corresponding solution can be written as follows (R -> 0, [3 = I):

(48)
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Fig. I. Denominator, D, of integrands vs the integration parameter f for the non-dissipative case
at the first resonance frequency (8 = 2.284). The double zero, leading to the resonance, corresponds

to the value of f = 0.399.

where

The non-dimensional factors Svh and Svv give a correction to the static solution for the
homogeneous case. In Fig. 2 these factors are presented for ~ = I (the surface of the half­
space) and for some values of Poisson's ratio, v. All curves pass through the point (0,1)
corresponding to the homogeneous half-space. The displacements are strongly influenced by
the parameter non-homogeneity, f = r/zo. Poisson's ratio has significant effect on horizontal
displacements for materials with low compressibility; for v > 0.3-0.4 values and directions
of horizontal displacements of the considered foundation differ considerably from those
for the homogeneous half-space.

In the dynamic case, expressions (48) can be used with introducing the value /]2 before
the integrals and with the replacement of the ratios of imaginary parts with the original
expressions in (36), [C22Q\ (~, k) - C21Q2(~' k)]/D and [C22Wl(~'k) - C2\WzC~, k)]jD for u, and uz ,

respectively. For the sake of comparison with the homogeneous case it is convenient to use,
instead of f, the parameter a = wr(p/Go)1/2 (a = Of). Figures 3 and 4 show the behavior of
the real and imaginary parts of amplitudes of vibration for e in (32) equal to 0.01. The
solution for the homogeneous half-space is represented by the dashed lines. As seen, the
solutions approach to the homogeneous solution with the increase in the parameter O. The
value a= 2.3 is close to the first resonance frequency for the non-dissipative case (2.284) ;
the behavior of the solution for this and for less values of the parameter f) is greatly
dissimilar from that corresponding to the homogeneous solution.
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Action ofa horizontal force
As the second example for the half-space with the exponentially increasing stiffness

consider the action of a horizontal harmonic force. Equations (6) for the function P using
the variable ~ can be rewritten in the form

(49)

A solution of this equation with the required behavior in vicinity of the point ~ = 0 can be
represented using Bessel function in the form (Abramowitz and Stegun, 1964):

(50)

where C is an arbitrary constant. Another way is to apply, as above, the series representation

ex

P = L cn~n+m
n=O

with the following equation for m :

whose roots are as follows

ml.2 = 0.5(1 ±Jl+41(2).

(51)

(52)

(53)

The root with the plus sign before the radical (m,) must be chosen for fulfilling the condition
at the point ~ = 0 (z -> 00). Setting Co = lone can find subsequent coefficients with the help
of the following recurrent relationship

n(n+2ml -I)'
(54)

This result corresponds to (50). Using expressions (50) or (51) (with m = m l ) as the solution
PI in eqns (25) and (26) we can represent the constant C I as

(55)

Defining the coefficients AI and A 2 by eqns (35) with the regarding eqns (24), expressions
(26) can be rewritten, analogously to (36), as follows
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For the case of a point force, the solution can be represented as the static displacements
at the surface of the homogeneous half-space multiplied by the corresponding factor

A Qo S
u, =-2G hhl'

oRr

2f32 rx - _ __

Sh, = (1-2v) Jo krHA~,k) dk. (57)

In the static case (0 = 0, f3 = 1), only one addendum (for n = 0) is kept in series (37),
(51), and the property of conjugation can be used analogously to eqns (44). The static
behavior of the factors S""1 and Shh2 for ~ = 1 is shown in Fig. 5 for several values of
Poisson's ratio. Note that in accordance with the principle ofreciprocity, the quantities Shv

and S'h must be identical for ~ = 1 (also in the dynamic case). This fact was checked by
calculations.

For the dynamic case, the singularities (the zeros of denominator D in (36) and (56)),
considered when studying the action of the vertical force remain valid. In addition, the
singularities associated with zeros of the quantity f appear when parameter 0 exceed the
value of 00 corresponding to the first zero of the function Jo(20). Unlike D these additional
singularities are always simple poles producing an imaginary part in complex amplitudes
of vibration. In Figs 6 and 7 the factors Shhl and Shh2 are given for the surface of the half­
space at some values of parameter 0; the dissipative parameter c; is equal to 0.01. In
distinction to the case of the vertical point, nonhomogeneity influences more significantly
the behavior of the amplitudes at large distances from the acting force. The noticeable
increase of the normalized amplitudes Shh2 with the increase of parameter a can be explained
by the influence of the waves of Love's type which are generated by the horizontal surface
force.

CONCLUSIONS

In this paper, the general solution for the response of the non-homogeneous (in the
depth direction) isotropic elastic medium (a half-space or a layer) to a time-harmonic
surface loading with arbitrary angle distribution has been constructed. On the basis of this
solution a half-space with the exponentially increasing shear modulus, subjected to vertical
and horizontal point forces has been considered. The corresponding solutions have the
form of infinite integrals including Bessel functions and power series in variable
~ = exp( - z/zo) (for the static case only first members of the series remain). For small
frequencies there are no singularities in integrands on the real axis of the complex plane
and the integrals can be calculated immediately. Beginning from a definite value of the
frequency (cutoff frequency), poles on the real axis appear; at some frequencies (resonance
frequencies) the one of poles is double which leads to infinite values of amplitudes at these
frequencies. These difficulties are overcome by introducing a material damping into the
solution. The results obtained show that non-homogeneity can considerably influence the
response of a half-space to dynamic loading especially in respect to the wave propagation
pattern. Thus, the radiation damping known in the case of the homogeneous half-space
can be absent or be significantly smaller for the considered half-space at low frequencies.
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Fig. 5. Static radial (a) and tangential (b) normalized surface displacements, caused by a surface

horizontal point force, for some values of Poisson's ratio.
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